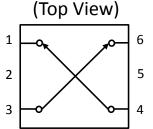
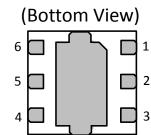


Features

- Control voltage : VC(H) = 1.8 to 5.0 V (3.0V TYP.) VC(L) = -0.2 to 0.2 V (0V TYP.)
- Low insertion loss : $L_{ins} = 0.50 \text{ dB TYP.} @ f = 2.5 \text{ GHz}$ $L_{ins} = 0.60 \text{ dB TYP.} @ f = 6.0 \text{ GHz}$
- High isolation : ISL = 23 dB TYP. @ f = 2.5 GHz
 ISL = 15 dB TYP. @ f = 6.0 GHz


• Handling power :


 $P_{in(0.5dB)} = +32 \text{ dBm TYP.} @ f = 2.5 \text{ GHz},$ VC(H) = 3.0 V, VC(L) = 0 V $P_{in(0.5dB)} = +30 \text{ dBm TYP.} @ f = 6.0 \text{ GHz},$ VC(H) = 3.0 V, VC(L) = 0 V


Applications

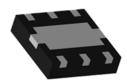
 Dual-band wireless LAN (IEEE802.11a/b/g/n), etc.

Pin Configuration and Internal Block Diagram

Pin No.	Pin Name
1	ANT2
2	VC2
3	RX
4	ТХ
5	VC1
6	ANT1
6	ANT1

Remark Exposed pad : GND

Ordering Information


Part Number	Order Number	Package	Marking	Supplying Form
CKRF2164XS03-C2	CKRF2164XS03-C2	6-pin TSON	10N	•Embossed tape 8 mm wide
		(Pb-Free)		•Pin 1, 6 face the perforation
				side of the tape
				·Qty 10 kpcs/reel

Package

6-pin Thin SON Package(XS03)
 (1.5mm x 1.5mm x 0.37mm)

Description

 The CKRF2164XS03 is a GaAs MMIC DPDT(<u>Double Pole Double Throw</u>) switch which was developed for 0.05 GHz and 6 GHz dual-band wireless LAN

Absolute Maximum Ratings

 $(T_A = +25^{\circ}C, unless otherwise specified)$

Parameter	Symbol	Rating	Unit
Control Voltage	VC	6.0 ^{Note 1}	V
Input Power	Pin1	+33 ^{Note 2}	dBm
	Pin2	+26 ^{Note 3}	dBm
Operating Ambient Temperature	T _A	-45~+85	°C
Storage Temperature	T _{stg}	-55~+150	°C

Note 1. |VC1 - VC2|≤6.0V

- 2. 3.0V≦|VC1 VC2|≦5.0V, f ≧ 0.5GHz
- 3. 3.0V≦|VC1 VC2|≦5.0V, f = 0.05GHz

Recommended Operating Range

 $(T_A = +25^{\circ}C, unless otherwise specified)$

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Operating Frequency	f	0.05	-	6.0	GHz
Switch Control Voltage (H)	VC(H)	+1.8	+3.0	+5.0	V
Switch Control Voltage (L)	VC(L)	-0.2	0	+0.2	V

Truth Table

VC1	VC2	ANT1-TX	ANT1-RX	ANT2-TX	ANT2-RX
High	Low	OFF	ON	ON	OFF
Low	High	ON	OFF	OFF	ON

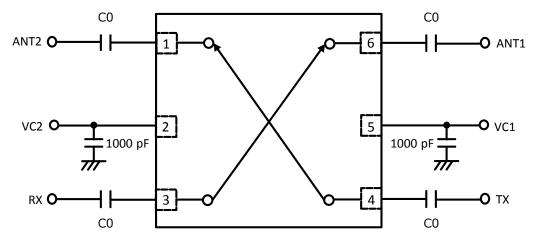
•Electrical Characteristics 1

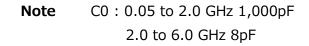
 $(T_A=+25 \,^{\circ}C, VC(H)=3.0V, VC(L)=0V, Zo=50 \,^{\circ}\Omega, DC Block Capacitance=8pF, unless otherwise specified)$

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Insertion Loss	Lins1	f = 0.05 to 0.5 GHz Note1	-	0.40	0.65	dB
	Lins2	f = 0.5 to 1.0 GHz Note1	-	0.45	0.70	dB
	Lins3	f = 1.0 to 2.0 GHz Note1	-	0.50	0.75	dB
	Lins4	f = 2.0 to 2.5 GHz	-	0.50	0.75	dB
	Lins5	f = 2.5 to 4.9 GHz	-	0.55	0.90	dB
	Lins6	f = 4.9 to 6.0 GHz	-	0.60	1.00	dB
Isolation	ISL1	f = 0.05 to 0.5 GHz Note1	32	35	-	dB
(ANT to TX,RX)	ISL2	f = 0.5 to 1.0 GHz Note1	26	29	-	dB
	ISL3	f = 1.0 to 2.0 GHz Note1	21	24	-	dB
	ISL4	f = 2.0 to 2.5 GHz	20	23	-	dB
	ISL5	f = 2.5 to 4.9 GHz	13	16	-	dB
	ISL6	f = 4.9 to 6.0 GHz	12	15	-	dB
Isolation	ISL7	f = 0.05 to 0.5 GHz Note1	34	37	-	dB
(ANT1 to ANT2, TX to RX)	ISL8	f = 0.5 to 1.0 GHz Note1	27	30	-	dB
	ISL9	f = 1.0 to 2.0 GHz Note1	22	25	-	dB
	ISL10	f = 2.0 to 2.5 GHz	22	25	-	dB
	ISL11	f = 2.5 to 4.9 GHz	15	18	-	dB
	ISL12	f = 4.9 to 6.0 GHz	15	18	-	dB
Input Return Loss	RLin1	f = 0.05 to 2.0 GHz Note1	-	20	-	dB
	RLin2	f = 2.0 to 6.0 GHz	-	15	-	dB
Output Return Loss	RLout1	f = 0.05 to 2.0 GHz Note1	-	20	-	dB
	RLout2	f = 2.0 to 6.0 GHz	-	15	-	dB
0.5 dB Loss Compression		f = 0.05 GHz	-	+24.5	-	dBm
Input Power Note2	D	f = 0.5 to 1.0 GHz	-	+31	-	dBm
	P _{in(0.5dB)}	f = 2.4 to 2.5 GHz	-	+32	-	dBm
		f = 4.9 to 6.0 GHz	-	+30	-	dBm

Note1 DC block capacitance = 1,000pF at f=0.05 to 2.0GHz

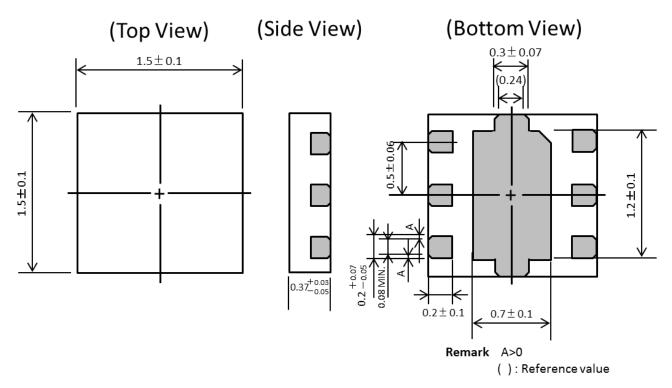
Note2 $P_{in(0.5dB)}$ is the measured input power level when the insertion loss increases 0.5dB more than that of the linear range.


•Electrical Characteristics 2


 $(T_A=+25\,^\circ\!\!C\,,~VC(H)=3.0V,~VC(L)=0V,~Zo=50\,\Omega\,,~DC$ Block Capacitance=8pF, unless otherwise specified)

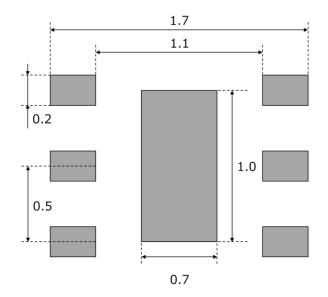
Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
2nd Harmonics	260	$f = 2.5 \text{ GHz}, P_{in} = +20 \text{dBm}$	-	85	-	dBc
	2f0	$f = 6.0 \text{ GHz}, P_{in} = +20 \text{dBm}$	-	80	-	dBc
3rd Harmonics	3f0	$f = 2.5 \text{ GHz}, P_{in}=+20 \text{dBm}$	-	85	-	dBc
	510	$f = 6.0 \text{ GHz}, P_{in} = +20 \text{dBm}$	-	85	-	dBc
3rd Order Input Intercept Point	IIΡ ₃	f = 2.5GHz 2-tone 1MHz Spacing	-	+55	-	dBm
Error Vector Magnitude		802.11a, 64QAM, 54Mbps, Pin≦+24.5dBm	-	2.5	-	%
	EVM	802.11g, 64QAM, 54Mbps, Pin≦+25dBm	-	2.5	-	%
Switch Control Speed	tsw	50% CTL to 90/10%	-	30	-	ns
Switch Control Current	Icont	Non RF	-	2	-	μA

Evaluation Circuit



The application circuits and their parameters are for reference only and are not intended for use in actual design-ins. This device is used it is necessary to use DC Block Capacitance.

Package Dimensions


6-pin TSON (Unit : mm)

PCB Layout Footprint

6-pin TSON (Unit : mm)

The PCB Layout Footprint in this document is for reference only.

[CAUTION]

- All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice.
- You should not alter, modify, copy, or otherwise misappropriate any CDK product, whether in whole or in part.
- CDK does not assume any liability for infringement of patents, copyrights, or other intellectual property
 rights of third parties by or arising from the use of CDK products or technical information described in this
 document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or
 other intellectual property rights of CDK or others.
- Descriptions of circuits, software and other related information in this document are provided only to
 illustrate the operation of semiconductor products and application examples. You are fully responsible for
 the incorporation of these circuits, software, and information in the design of your equipment. CDK
 assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits,
 software, or information.
- CDK has used reasonable care in preparing the information included in this document, but CDK does not warrant that such information is error free. CDK assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- Although CDK endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions.
 Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a CDK product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention,

appropriate treatment for aging degradation or any other appropriate measures Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the

final products or system manufactured by you.

- Please use CDK products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive.
 CDK assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of CDK.

Broadband DPDT Switch for Dual-Band Wireless LAN

[Caution in the gallium arsenide (GaAs) product handling]

This product uses gallium arsenide (GaAs) of the toxic substance appointed in laws and ordinances. GaAs vapor and powder are hazardous to human health if inhaled or ingested.

- \cdot Do not dispose in fire or break up this product.
- Do not chemically make gas or powder with this product.
- $\boldsymbol{\cdot}$ When discard this product, please obey the law of your country.
- Do not lick the product or in any way allow it to enter the mouth.

[CAUTION]

Although this device is designed to be as robust as possible, ESD (Electrostatic Discharge) can damage this device. This device must be protected at all times from ESD. Static charges may easily produce potentials of several kilovolts on the human body or equipment, which can discharge without detection. Industry-standard ESD precautions should be used at all times.

CHUO DENSHI KOGYO CO., LTD 3400 Kooyama, Matsubase, Uki-City, Kumamoto 869-0512, Japan Tel : +81-964-32-2730 Fax : +81-964-32-3549 URL : http://www.en.cdk.co.jp/

Contact info for inquiries Electronic Devices Division Sales and Planning Department TEL : +81-964-32-2750 E-mail : info@cdk.co.jp FAX : +81-964-32-3549